

Intermodal Data: A Practical Introduction to Understanding its Full Potential

Tuesday, April 7th at 2:00 p.m.

Housekeeping

- Speakers will be followed by audience question and answer session
- Audience audio will be muted
- Submit questions at any time for Q&A session at the end of the webinar presentations
- A recorded version of this webinar, including the slides, will be available in the near future

This Webinar is part of the Business Intelligence Services Series Brought to you by:

BlackBerry. Radar

Alex Van Winckel
Senior Consultant
a.vanwinckel@inform-software.com

Matthew Wittemeier
Marketing Manager
m.wittemeier@inform-software.com

Background and **Vision**

- A. Established in 1969
- B. Since 1985 always profitable
- C. Organically growing, no external investors
- D. Internal ownership
- E. Today more than 850 employees
- F. Principal corporate objective: long-term sustainability.

Background and Vision

- A. Established in 1969
- B. Since 1985 always profitable
- C. Organically growing, no external investors
- D. Internal ownership
- E. Today more than 850 employees
- F. Principal corporate objective: long-term sustainability.

LONG-TERM CUSTOMER RELATIONSHIPS

Audi (1986)
Daimler (1986)
British Airways (1991)
HHLA (2000)

© 2020 INFORM GmbH, All Rights Reserved | #ChallengeYourTOS | infrm.co/CYTOS | +49

GENERAL ARTIFICIAL INTELLIGENCE

Building systems that can mimic all aspects of human intelligence.

Example: Chatbots (Siri, Alexa, Cortana)

GENERAL ARTIFICIAL INTELLIGENCE

Building systems that can mimic all aspects of human intelligence

Example: Chatbots (Siri, Alexa, Cortana)

MACHINE LEARNING (ML)

Using algorithms to iteratively learn from and adapt to data.

Understanding the past.

Example: Email spam filter; chess computer

GENERAL ARTIFICIAL INTELLIGENCE

Building systems that can mimic all aspects of human intelligence.

Example: Chatbots (Siri, Alexa, Cortana)

MACHINE LEARNING (ML)

Using algorithms to iteratively learn from and adapt to data.

Understanding the past.

Example: Email spam filter; chess computer

OPERATIONS RESEARCH (OR)

Using analytical methods and algorithms to optimize business processes.

Anticipating the future.

Example: Real-time Train Load Optimization

WHAT IS ARTIFICIAL INTELLIGENCE

WHAT IS AI

WHAT IS AI

WHAT IS AI

WHAT IS MACHINE LEARNING (ML)

US spending on science, space, and technology correlates with

Suicides by hanging, strangulation and suffocation

tylervigen.com

Number of people who drowned by falling into a pool correlates with

Films Nicolas Cage appeared in

Per capita consumption of mozzarella cheese correlates with

Civil engineering doctorates awarded

TRADITIONAL PROGRAMMING

MACHINE LEARNING

MACHINE LEARNING TYPICAL PROJECT

Milestone

State the problem as a ML task

Predict a film's success (revenue and rating)

Data collection

Data cleaning

Feature engineering

Modelling and evaluations

Predictions

Measure the impact

Know-How

Excellent data from TMDB on film, including: actors, language, duration, country, genre, budget, revenue, rating

Feature engineering

Into numbers Converting data points €20,000,000.00 Budget €300,000,000.00 Revenue 7.6 / 10.0 Rating ? – No clear numbers Actors, language, genre

Feature engineering

Converting data points

Actors, language, genre

Actors

? – No clear numbers

e.g. Score or Net Worth

Formula to determine an actor's "Score"

 $\sum_{All \ films \ of \ the \ actor} #Votes * Avg. Film \ Rating$

Feature engineering

Converting data points

Actors

Actor Name

Leonardo Di Caprio

Tom Hanks

Robert Downey Jr.

Samuel L. Jackson

Scarlett Johansson

 $\sum_{All \ films \ of \ the \ actor} #Votes * Avg. Film \ Rating$

Actor Score

1060292.4

972055.3

939755.5

939506.0

926052.5

Milestone

State the problem as a ML task

Predict a film's success (revenue and rating)

Data collection

Data cleaning

Feature engineering

Modelling and evaluations

Predictions

Measure the impact

Excellent data from TMDB on film, including: actors, language, duration, country, genre, budget, revenue, rating

Quantifying all data

Determining a suitable prediction model (Regression)

Split data into training and testing sets

MAE: Revenue ~ \$ 19M Rating: ~ 0.59

Know-How

Know-How

Revenue

Top/Flop quantification

Impacted most by

- Budget
- 4th actor

Rating

Small MAE, RMSE

Impacted most by

- Runtime
- 4th actor

PREDICT FILM SUCCESS WITH ML

Release date / / Nov 22
Genre / / Crime
Language / / English
Countries / / US
Runtime / / 90 minutes
Budget / / \$80,000,000

Cast

Douglas / / Benedict Cumberbatch
Emma / / Kangana Ranaut
Griselle / / Meryl Streep
Greg / / Bryan Cranston
Athena / / Emily Blunt (4th Actor)

Prediction

Revenue / / \$124,865,328 Profit/Loss // **\$44,865,328**

Rating / / 5.53 / 10.0

PREDICT FILM SUCCESS WITH ML

Release date / / Nov 22
Genre / / Crime
Language / / English
Countries / / US
Runtime / / 90 minutes
Budget / / \$100,000,000

Cast

Douglas / / Benedict Cumberbatch
Emma / / Kangana Ranaut
Griselle / / Meryl Streep
Greg / / Bryan Cranston
Athena / / Emily Blunt (4th Actor)

Prediction

Revenue / / \$ 177,114,944 Profit/Loss // **\$77,114,944**

Rating / / 5.54 / 10.0

PREDICT FILM SUCCESS WITH ML

Release date / / Nov 22
Genre / / Crime
Language / / English
Countries / / US
Runtime / / 180 minutes
Budget / / \$100,000,000

Cast

Douglas / / Benedict Cumberbatch
Emma / / Kangana Ranaut
Griselle / / Meryl Streep
Greg / / Bryan Cranston
Athena / / Emily Blunt (4th Actor)

Prediction

Revenue / / \$ 247,791,904 Profit/Loss // **\$147,791,904**

Rating / / 7.03 / 10.0

Know-How

Capabilities

Predicting crane execution times.

Predicting container dwell times.

Predicting outbound mode of transport.

Predicting equipment maintenance schedules.

PREDICTING OUTBOUND MODE OF TRANSPORT

Transport modes

What was expected when the container arrived, and what actually happened

PREDICTING OUTBOUND MODE OF TRANSPORT

PREDICTING OUTBOUND MODE OF TRANSPORT

Prediction accuracy

Departure modes correctly predicted in the test set

PREDICTING

CONTAINER DWELL TIME

Dwell times

Loaded boxes, without outliers and boxes with known expected departure time

PREDICTING

CONTAINER DWELL TIME

PREDICTING CONTAINER

DWELL TIME

BRINGING IT ALL TOGETHER

Dwell times per expected departure mode

Median, 25th and 75th percentile, 95% interval, outliers Loaded boxes, without outliers and boxes with known expected departure time

Enter them in the control panel

#CHALLENGE YOUR TOS

Add-on Al and optimization software for any TOS

Request your obligation free consult on Machine Learning and Optimization. infrm.co/IANAwebinar

Alex Van Wincke Senior Consultant a.vanwinckel@inform-software.com

Matthew Wittemeier Marketing Manager m.wittemeier@inform-software.com

www.inform-software.com/challengeyourtos

■ INFORM

Many Thanks to Our Sponsor!

BlackBerry. Radar

For more information about BlackBerry Radar, visit:

www.blackberry.com/radar

For more information about IANA visit: intermodal.org or e-mail info@intermodal.org

© 2020 Intermodal Association of North America. This presentation was produced for the use of IANA members and may not be reproduced, re-distributed or passed to any other person or published in whole or in part for any purpose without the prior consent of IANA. IANA, 11785 Beltsville Drive, Calverton, MD 20705-4048.

