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Background
and Vision
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Established in 1969
3 . .
¥ Since 1985 always profitable
= Organically growing,
no external investors
g
Internal ownership
g
Today more than 850
. employees
1969 1985 today

Principal corporate objective:
long-term sustainability.

© 2020 INFORM GmbH, All Rights Reserved | #ChallengeYourTOS | infrm.co/CYTOS | +49 2408 9456 6000 | m.wittemeier@inform-software.com NINFORM



Background
and Vision

Established in 1969
Since 1985 always profitable

Organically growing,
no external investors

Internal ownership

Today more than 850
employees

Principal corporate objective:
long-term sustainability.

© 2020 INFORM GmbH, All Rights Reserved | #ChallengeYourTOS | infrm.co/CYTOS | +49 2408 9456 6000 | m.wittemeier@inform-software.com NINFORM



L
ADD Lol YO0
bW AIRFRANCE # AIR NEW ZEALAND ALSTOM QU
Audi
=~ ——
BMW Group @ BOSCH BRITISH <~ @)
AIRWAYS
thyssenkrupp
Rabobank
3 —
LUUO mgE B BN )
ING KOMATSU £AFARGE LIEBHERR
(@T Eon ParkerSteel ng Seattle: Rolls Royce
QANTAS
swiss posT SamsKIP Geo) CONTARGO & 7~
- o == Paldiski
w/posten VAN Hanson — R
A“iancei_m HEIDELBERGCEMENTGroup
T wen.  GEe WMal  weT
pu \ /L\(M"G\ulmﬂm(lc
(1A | MIGROS € KL A
|nterser0h Koeabl-Reemainal TERMINALS

LONG-TERM
CUSTOMER
RELATIONSHIPS

Audi (1986)

Daimler (1986)

British Airways (1991)
HHLA (2000)



SCOPE OF
OPERATIONS




e

.~ Lifting Global Trade.
APM
TERMINALS

GLOBAL
CONTAINER
TERMINALS
CANADA

Rottordan SamsKIP

CONTARGO®

Kombi-Terminal B B 8 trimodal network

T

— .. :—: o - = " ’ = g .
© 2020 INFORM GmbH, Al Rights Resew'eﬂ #ChallengeYourTOS | inffm.co/CYTOS | T DUmonDe e L gl = el N INFORM




GENERAL
ARTIFICIAL
INTELLIGENCE

Building systems that can
mimic all aspects of
human intelligence.

Chatbots
(Siri, Alexa, Cortana)
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MACHINE
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Using algorithms to
iteratively learn from and
adapt to data.

Understanding the past.

Email spam
filter; chess computer
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OPERATIONS
RESEARCH (OR)

Using analytical methods
and algorithms to optimize
business processes.

Anticipating the future.

Real-time Train Load
Optimization
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WHAT IS
ARTIFICIAL INTELLIGENCE
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WHAT IS
MACHINE LEARNING (ML)



Artificial

WHAT IS ML Intelligence

Machine
Learning
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Artificial

WHAT IS ML Regression Intelligence

Supervised

Machine
Learning

Classification
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Artificial

WHAT IS ML Intelligence
Dog or Muffin?

Supervised

Machine
Learning

Classification



Artificial

WHAT IS ML Intelligence

Machine
Learning

Unsupervised

Clustering
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WHAT IS ML
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WHAT IS ML

US crude oil imports from Norway
correlates with

Drivers killed in collision with railway train

US spending on science, space, and technology

correlates with

Suicides by hanging, strangulation and suffocation
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MACHINE
LEARNING
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MAC H I N E Milestone Time
LEARNING

State the problem as a ML task ~10%
TYPICAL PROJECT |
s | 3
esults )

=]

ML Skills Feature engineering

COMPUTER

Modelling and evaluations

~5%
Predictions

Measure the impact ~5%

P BT
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Milestone

State the problem as a ML task Predict a film’s success (revenue and rating)

Data.cellection
Data cleaning

P BT
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Feature engineering

Converting data points Into numbers

Actors Z #Votes * Avg.Film Rating
All films of the actor

Actor Name Actor Score
Leonardo Di Caprio 1060292.4
Tom Hanks 972055.3

Robert Downey Jr. 939755.5

Samuel L. Jackson 939506.0
Scarlett Johansson 926052.5
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PREDICT

FILM SUCCESS
WITH ML

Know-How

WINFORM
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MACHINE

LEARNING
IN TERMINAL OPS
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PREDICTING
OUTBOUND MODE Transport modes

What was expected when the container arrived, and what actually happened

Expected departure Rail Truck Feeder Ship NA

COMPUTER

Expected departure

Rail Truck Feeder Ship
Actual departure
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PREDICTING

Expected departure (TOS) -
Port of discharge (route) -
Port of discharge (final) -
Shipping company -
Arrival mode -
Destination (box) -
Container type -

Customs status -

Month -

Origin 7

Weekday -

Seal?

Forwarding agent -
Leasing? -

Reefer? -

Dangerous goods? -

Variable

OUTBOUND MODE Variable importance
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PREDICTING B
OUTBOU N D MODE Prediction accuracy

Departure modes correctly predicted in the test set

Source TO0S I ML model
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Accurately predicted [%]

Rail Truck Feeder Ship
Actual departure
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PREDICTING
CONTAINER Dwell times

Loaded boxes, without outliers and boxes with known expected departure time

0 100 200 300
Dwell time [hours]
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PREDICTING

CONTAINER Variable importance

Port of discharge (route) -
Shipping company -
Month -

Expected departure (TOS) -
Weekday -

Destination (box)

Port of discharge (final) -
Container type -

Origin -

Arrival mode -
Dangerous goods? -
Leasing? -

Forwarding agent -
Customs status -
Reefer? -

Seal? -

Variable

50 100

Importance
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PREDICTING
CONTAINER

‘ 100%

Port of discharge (by country)
AL AO AR AT BD BG BH BRCA ...

A AE AU AW BB BEBJ BUCG CICHCO ..
78

| L)

Outbound mode of transport
Rail Truck Feeder Ship WS

A NA
72

| 2y

Shipping company

(70
)

Weekday of arrival
Sun Mon Tu Wed Th

Fri Sat

87 a0 113
14% 32% 12%

32
2%
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BRINGING
ITALL
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Dwell times per expected departure mode

Median, 25th and 75th percentile, 95% interval, outliers
Loaded boxes, without outliers and boxes with known expected departure time

Expected departure B3 Rail B8 Truck B3 Feeder EZ Ship E8 NA

0 100 200
Dwell time [hours]

300
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Intermodal.org
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